ПРОГРАММНЫЙ КОМПЛЕКС ТЕРМО: ПРОГРАММА PROPHIL-РЕГИСТРАЦИЯ И ОБРАБОТКА ТЕМПЕРАТУРНОГО ПРОФИЛЯ ВОЛНЫ ГОРЕНИЯ

1. МЕТОДИКА ОБРАБОТКИ РЕЗУЛЬТАТОВ ЭКСПЕРИМЕНТА

1.1.Методика калибровки

Калибровка проводилась в соответствии с методикой, изложенной в [12].

Для калибровки установки использовались приборы:

-Вольтметр универсальный В7-21А;

-Источник питания ИРН-64.

С источника питания подавалось значение ЭДС, соответствующее термо-ЭДС термопары при определенной температуре (табл. 1. 2). На выходе усилителя при помощи АЦП фиксировалось условное значение выходного сигнала. По этим данным строилась калибровочная кривая T = f(U) (рис. 1.1).

Таблица 1.2

Зависимость условного значение выходного сигнала от термо-ЭДС.

термопары

Температура, ^о С	Термо-ЭДС. термопары,	Выходной сигнал
	MB	
100	1,35	1
200	2,75	14
300	4,24	48
400	5,82	84
500	7,46	124
600	9,13	165
700	10,80	207
800	12,46	247
900	14,12	291
1000	15,76	331

1100	17,38	373
1200	18,96	412
1300	20,47	451
1400	21,90	486
1500	23,22	519

При анализе зависимости условного значения выходного сигнала от термо-ЭДС термопары была получена линейная зависимость вида:

$$T = a + b U$$
,

где *a* =124,704;

b = 2,682

Значения коэффициентов *а* и *b* использовались для определения температуры спая термопары по выходным данным АЦП.

Рис. 1.1. Калибровочный график зависимости T=F(U)

1.2.Предварительная обработка температурного профиля

В некоторых экспериментах бывает трудно достичь удовлетворительного отношения сигнал к шуму. При этом на экспериментальную кривую накладывается большое количество флуктуаций, вызванных случайными помехами и разбросом экспериментальных данных. Именно к таким кривым принадлежит температурный профиль волны горения ГКС (рис. 1.2). Для удаления случайных шумов и большого разброса экспериментальных данных применяют различные алгоритмы. Как правило, при этом используют аппроксимацию данных уравнением математической модели процесса [13], сглаживающим полиномом различных степеней [14], либо сплайном [15].

Рис. 1.2. Общий вид температурного профиля для системы 40%МПФ-2—60%NiO:

а — исходная кривая; *б* — сглаженная кривая

Математическая модель распространения тепла в образце довольно сложна и требует поиска производных исходной функции. Поэтому для устранения шумов затруднительно аппроксимировать данные уравнением математической модели процесса.

Наиболее прогрессивным в настоящее время является сглаживание экспериментальных данных сплайном.

В настоящей работе применялся алгоритм сглаживания сплайном, описанный в [15].

Пример сглаживания сплайном кривой температурного профиля для системы 40%МПФ-2—60%NiO показан на рис. 1.2.

1.3.Определение кинетических параметров волны горения ГКС

Поиск кинетических параметров волны горения ГКС производился при помощи методики [4, 5].

Распределение степени полноты реакции (η) и скорости тепловыделения (Φ) по координате (x) можно найти из системы уравнений

$$\begin{cases} \frac{d}{dx} \left(\lambda * \frac{dT}{dx} \right) - m * c * \frac{dT}{dx} + \Phi = 0; \\ -m * \frac{d\eta}{dx} + \frac{\Phi}{Q} = 0; \\ \lambda = \lambda_{k} * \eta - \lambda_{CM} (1 - \eta) \end{cases}$$
(1.1)

где *m* — массовая скорость горения;

с — теплоемкость;

Q — тепловой эффект реакции;

 $\lambda_{c_{\mathcal{M}}}, \lambda_{\kappa}$ — коэффициент теплопроводности исходной смеси и продуктов реакции.

Решение системы (3.1) выглядит следующим образом

$$\eta = \frac{m * c * (T - T_0) - \lambda * c * \frac{dT}{dx}}{(\lambda_k - \lambda_{CM}) * \frac{dT}{dx} + Q * m}; \qquad (1.2)$$

$$\Phi = m * Q * \frac{d\eta}{dx} \tag{1.3}$$

Скорость тепловыделения можно представить в виде [1, 2]

$$\boldsymbol{\Phi} = \boldsymbol{Q} \ast \boldsymbol{k}_{0} \ast \boldsymbol{\varphi}(\boldsymbol{\eta}) \ast \boldsymbol{e}^{-\frac{E}{RT}}$$
(1.4)

где кинетический закон имеет вид

$$\phi(\eta) = \frac{1}{\eta^{n}} * e^{-m_{0}*\eta}$$
(1.5)

С учетом (1.4) (1.5)

$$\Phi(T) = Q * K_0 * \frac{1}{\eta^n} * e^{-m_0 * \eta} * e^{-\frac{E}{RT}}$$
(1.6)

Прологарифмируем выражение (1.6)

$$\ln(\Phi(T)) = \ln(Q * K_0) - n * \ln\eta - m_0 * \eta - \frac{E}{RT}$$
(1.7)

ИЛИ

$$\ln(\Phi(T)) = a_0 + a_1 * x_1 + a_2 * x_2 + a_3 * x_3$$
(1.8)

где
$$a_0 = \ln(Q * K_0); a_1 = -n; a_2 = -m_0; a_3 = -\frac{E}{R}; x_1 = \ln\eta; x_2 = \eta; x_3 = \frac{1}{T}.$$

Сумма квадратов отклонений принимает вид

$$S = \sum_{i=1}^{N} (y_i - (a_0 + a_1 * x_1 + a_2 * x_2 + a_3 * x_3))^2$$
(1.9)

Для определения коэффициентов возьмем частные производные суммы квадратов отклонений по коэффициентам с учетом (1.9)

$$\begin{cases} \frac{\partial S}{\partial a_0} = -2 * \sum_{i=1}^{N} (y_i - (a_0 + a_1 * x_{1i} + a_2 * x_{2i} + a_3 * x_{3i})) = 0 \\ \frac{\partial S}{\partial a_1} = -2 * \sum_{i=1}^{N} x_{1i} (y_i - (a_0 + a_1 * x_{1i} + a_2 * x_{2i} + a_3 * x_{3i})) = 0 \\ \frac{\partial S}{\partial a_2} = -2 * \sum_{i=1}^{N} x_{2i} (y_i - (a_0 + a_1 * x_{1i} + a_2 * x_{2i} + a_3 * x_{3i})) = 0 \\ \frac{\partial S}{\partial a_3} = -2 * \sum_{i=1}^{N} x_{3i} (y_i - (a_0 + a_1 * x_{1i} + a_2 * x_{2i} + a_3 * x_{3i})) = 0 \end{cases}$$
(1.10)

После преобразований получаем

$$\begin{cases} N * a_{0} + a_{1} * \sum_{i=1}^{N} x_{1i} + a_{2} * \sum_{i=1}^{N} x_{2i} + a_{3} * \sum_{i=1}^{N} x_{3i} = \sum_{i=1}^{N} y_{i} \\ a_{0} * \sum_{i=1}^{N} x_{1i} + a_{1} * \sum_{i=1}^{N} x_{1i}^{2} + a_{2} * \sum_{i=1}^{N} x_{2i} + a_{3} * \sum_{i=1}^{N} x_{3i} = \sum_{i=1}^{N} y_{i} * x_{1i} \\ a_{0} * \sum_{i=1}^{N} x_{2i} + a_{1} * \sum_{i=1}^{N} x_{1i} * x_{2i} + a_{2} * \sum_{i=1}^{N} x_{2i}^{2} + a_{3} * \sum_{i=1}^{N} x_{3i} * x_{2i} = \sum_{i=1}^{N} y_{i} * x_{2i} \\ a_{0} * \sum_{i=1}^{N} x_{3i} + a_{1} * \sum_{i=1}^{N} x_{1i} * x_{3i} + a_{2} * \sum_{i=1}^{N} x_{2i} * x_{3i} + a_{3} * \sum_{i=1}^{N} x_{3i}^{2} = \sum_{i=1}^{N} y_{i} * x_{3i} \end{cases}$$
(1.11)

Распределения $\eta(x)$ и $\Phi(x)$ получали по уравнениям (1.2) и (1.3), используя экспериментально полученные значения T(x).

Систему уравнений (1.11) решали методом Крамера.

Далее находили кинетические параметры

$$K_0 = \frac{\exp(a_0)}{Q}; \ n = -a_1; \ m_0 = -a_2; \ E = -a_3R.$$

Изложенная методика была реализована в программа Prophil (см. главу 2.2).

2. ПРОГРАММНО-АППАРАТНЫЙ КОМПЛЕКС ДЛЯ СНЯТИЯ И ОБРАБОТКИ ТЕМПЕРАТУРНОГО ПРОФИЛЯ ВОЛНЫ ГОРЕНИЯ ГКС

2.1.Описание установки

Схема установки показана на рисунке 2.1.

Сигнал термо-ЭДС термопары поступает на предварительный усилитель сигнала. Усиленный сигнал подается на аналого-цифровой преобразователь, после чего обрабатывается при помощи ЭВМ.

Предварительный усилитель сигнала термопары

Предварительный усилитель сигнала выполнен на микросхеме К157УД2, включенной по типовой схеме дифференциального усилителя [16].

Усилитель проектировался исходя из следующих предпосылок:

- высокая надежность интегральной микросхемы К157УД2, применяемой в различной аппаратуре подобного назначения;
- большая точность измерений в широком диапазоне частот, связанная с линейной амплитудно-частотной характеристикой дифференциального усилителя[16];

 возможность изготовления на одной микросхеме двух предварительных усилителей (в одном «чипе» находится два операционных усилителя).

Принципиальная схема усилителя приведена на рис. 2.2, спецификация элементов в таблице 2.1.

Рис. 2.2. Принципиальная схема предварительного усилителя сигнала

термопары

Таблица 2.1

Спецификация элементов предварительного усилителя сигнала термопары

Позиция	Наименование
R1, R2	МЛТ 0,125 10 КОм
R3	СПЗ-4 300 КОм
DA1	К157УД2

Технические характеристики предварительного усилителя приведены в таблице 2.2. Технические характеристики предварительного усилителя сигнала

термоп	ары
--------	-----

Наименование характеристики	Значение
Напряжение питания U _{и.п.} , В	±15
Ток потребления I _{пот} ., мА	≤7
Максимальное выходное напряжение U _{вых, max} , В	±13
Коэффициент усиления К _у	0600

Плата АЦП

В качестве АЦП применена плата ввода сигнала PC-LPM-16 PnP производства фирмы National Instruments [17].

Нумерация выводов платы АЦП приведена на рис. 2.3, технические характеристики в таблице 2.3.

	1	2	
Bx. 0	3	4	Bx. 8
Bx. 1	5	6	Bx. 9
Bx. 2	7	8	Bx. 10
Bx. 3	9	10	Bx. 11
Bx. 4	11	12	Bx. 12
Bx. 5	13	14	Bx. 13
Bx. 6	15	16	Bx. 14
Bx. 7	17	18	Bx. 15
	:	•	

Рис. 2.3. Нумерация выводов платы АЦП

Таблица 2.3

Технические характеристики платы АЦП

Наименование характеристики	Значение
Источник питания	От ЭВМ
Число независимых каналов	
— однополюсных	16
— дифференциальных	8
Максимальное входное напряжение U _{вх, max} , В	
— однополюсных каналов	5; 10
— дифференциальных каналов	± 5
Частота оцифровки n, Гц	50000
Разрядность, бит	12

Ввод сигнала и последующая его обработка реализована в программе Prophil (см. главу 2.2).

2.2.Описание программы Prophil

Запуск программы

Запуск программы осуществляется при выборе в меню «Пуск» последовательности команд «Программы»—«Termo»—«Prophil» (рис. 2.4).

Рис. 2.4. Последовательность команд при запуске программы

Система меню и элементы управления

При запуске на экране появляется основное окно программы (рис. 2.5)

Рис. 2.5. Основное окно программы

Основным элементом управления программы является меню (рис. 2.5).

Меню «Файл» (рис. 2.6) позволяет открывать, закрывать файлы данных и осуществлять выход из программы.

Рис. 2.6. Меню «Файл»

Меню «Правка» (рис. 2.7) позволяет открывать окна редактора исходных данных и выбора интервала температурного профиля.

Исходные данные	N
Выбор интервала	N

Рис. 2.7. Меню «Правка»

Меню АЦП (рис. 2.8) позволяет работать с АЦП и включает следую-

щие команды

- «Начать прием информации» переход в режим приема информации с АЦП;
- «Закончить прием информации» прекращение приема информации с АЦП;
- Ждущий режим АЦП» ожидание повышения уровня входного сигнала до определенного значения (см. п. «Работа с АЦП»), после чего переход в режим приема информации.

Рис. 2.8. Меню «АЦП»

Меню обработка (рис. 2.9) позволяет проводить обработку температурного профиля и включает следующие команды

- «Увеличение числа точек» вызов окна увеличения числа точек исходного графика;
- «Сглаживание» —сглаживание графика полиномом (алгоритм сглаживания по семи точкам);
- «Сглаживание сплайном» вызов окна сглаживания сплайном;
- «Температура воспламенения» определение температуры самовоспламенения и вызов окна результатов расчета;
- «Расчет кинетических параметров» расчет кинетических параметров и вызов окна результатов расчета.

Рис. 2.9. Меню «Обработка»

Меню сервис позволяет выбрать следующие сервисные команды

 — «Просмотр результатов расчета» — повторный вызов окна результатов расчета; — «Параметры» — вызывает окно параметров программы.

Рис. 2.10. Меню «Сервис»

Наиболее часто используемые команды меню дублируются «быстрыми кнопками» на панели инструментов. Назначение команд «быстрых кнопок» отображаются в статусной строке в нижней части окна программы (рис. 2.5).

К управляющим элементам программы также относится сплывающее меню графика температурного профиля (рис. 2.5). Оно вызывается нажатием правой кнопки манипулятора «мышь» на поле графика и позволяет выполнять несколько полезных сервисных команд

- «Сохранить» сохранение текущего изображения графика на диске;
- «Копировать» копирование текущего изображения графика в буфер обмена;
- «Прямая» вывод графика преобразованного к прямой линии;
- «Ломаная» вывод графика ломаной линией;
- «Напряженный сплайн» вывод графика аппроксимированного напряженным сплайном;
- «Сглаживающий сплайн» вывод графика аппроксимированного сглаживающим сплайном;
- «Параметр сглаживания» ввод параметра сглаживания при отображении графика аппроксимированного сглаживающим сплайном;
- «Первая производная» просмотр первой производной графика;
- «Вторая производная» просмотр второй производной графика;

 «Окно координат» — вызов окна, позволяющего просматривать значение координат при перемещении указателя манипулятора «мышь» по графику.

Примечание: пункты меню, позволяющие просмотреть производные графика, работают лишь при выводе графика аппроксимированного сплайном.

Установка параметров системы

Установка параметров системы производится при выборе пункта «Параметры» из меню «Сервис» (рис. 2.10). Общий вид окна установки параметров системы показан на рис. 2.11.

Параметры АЦП	🗙 Параметры АЦП 🛛 🗙
АЦП Таймер Калибровка	АЦП Таймер Калибровка
Соединение Канал Ждущий режим Отклонение, % 50 Интервал опроса, мс 10	 Рабочие параметры Интервал опроса, мс 10 ÷ Число точек 10000 ÷ Динамический график
Cancel C	
Параметры	АЦП
АЦП Тай	нер Калибровка
	T = a + b X
Kc	эффициенты уравнения
	a = 0.000
	b = 1.000
<i>Γ, εραλ. C</i> 5,0 2,5 0,0	0 2,5 5,0 V, B
	X Cancel

Рис. 2.11. Окно установки параметров системы

Ввод и предварительная обработка данных

Ввод данных с АЦП осуществляется при помощи команд меню «АЦП» (рис. 2.8).

Ввод дополнительных параметров и просмотр числовых данных осуществляется при помощи команды «Исходные данные» из меню «Правка» (рис. 2.7). Общий вид окна редактирования исходных данных показан на рис. 2.12.

🔨 Исход	ные данные		_ 🗆 🗵	
Началы	Начальная температура, град. С			
Теплопр	ооводность состава, Вт/(м	град.)	1,5	
Теплопр	ооводность продуктов, Вт/(м град.)	0,030	
Теплово	ой эффект реакции, Дж/кг		2900000	
Линейн	ая скорость горения, м/с		0,00428	
Теплоен	икость продуктов, Дж/(кг	град.)	1020	
Плотнос	сть смеси, кг/м ³	· ·	2476,17	
Nº n/n	Tau, c	Т, град.	c	
1	3,550	124,700	_	
2	3,580	124,700		
3	3,600	124,700		
4	3,630	124,700		
5	3 660	124 700	_	
🗶 Cancel 🛛 🗸 OK 🚶				

Рис. 2.12. Окно редактирования исходных данных

Предварительная обработка исходных данных может включать в себя

— выбор интервала;

— сглаживание (полиномом либо сплайном);

— увеличение числа точек.

Выбор интервала осуществляется соответствующей командой из меню «Правка» (рис. 2.7). Общий вид окна выбора интервала показан на рис. (рис. 2.13).

Рис. 2.13. Окно выбора интервала

Выбор интервала осуществляется при помощи двух указателей (вертикальных пунктирных линий), «перетаскиваемых» манипулятором «мышь».

Сглаживание и увеличение числа точек осуществляется соответствующими пунктами меню «Обработка» (рис. 2.9).

Расчет температуры самовоспламенения и кинетических параметров

Расчет температуры самовоспламенения и кинетических параметров осуществляется при помощи выбора соответствующих команд из меню «Обработка» (рис. 2.9).

После завершения расчета на экране появляется окно, отображающее результаты расчета (рис. 2.14).

Рис. 2.14. Окно результатов расчета

Окно результатов расчета имеет три страницы:

- отображение численных данных;
- отображение функции степени превращения;
- отображение функции тепловыделения.

Переключение между страницами осуществляется при помощи кнопок, расположенных в правом верхнем углу окна (рис. 2.14).

3. ТЕСТИРОВАНИЕ ПРОГРАММНО-АППАРАТНОГО КОМПЛЕКСА

3.1. Математическая модель тестового примера

Для уравнения (1.2) нельзя получить решение в явном виде относительно параметра *T*. Поэтому для проверки удобно воспользоваться уравнением, для которого можно получить решение в явном виде. При этом общий вид уравнения должен соответствовать (1.2), а форма профиля — экспериментальной.

Авторами модели математической обработки температурного профиля [4, 5] предложено для этих целей использовать уравнение

$$\frac{d^{2}U}{dx^{2}} - \mu \frac{dU}{dx} + \Phi (U) = 0, \qquad (3.12)$$

где

 $\Phi(U) = BU^2(A - U).$

Решение этого уравнения имеет вид

$$U(x) = \frac{C_1 A \exp(\mu x)}{1 + C_1 \exp(\mu x)}.$$
 (3.13)

Авторами уравнений (3.12), (3.13) был произведен подбор таких параметров, чтобы значения U(x) были численно равны реальным результатам T(x). При этом были получены следующие значения

$$A = 2000;$$

 $\mu = 10;$
 $C_1 = 1;$
 $x = [0, 0...0, 6].$

Нами было установлено, что указанные параметры имеют определенный смысл:

А — «размах» температурного профиля по температуре;

µ — «крутизна» подъема температуры;

С₁ — задает форму профиля.

19

Исследуя различные значения *C*₁ можно получить модели температурного профиля с видимостью различных зон.

Рис. 3.1. Общий вид модельного профиля:

 $a - C_1 = 0,1; \delta - C_1 = 1,0; \epsilon - C_1 = 0,003$

Значение $C_1 = 0,1$ дает модель полного профиля волны горения (рис. 3.1, *a*). При увеличении C_1 до 1,0 получается верхний участок профиля (рис. 3.1, *б*), а при снижении до 0,003 нижний (рис. 3.1, *в*). Границей раз-

дела этих участков является температура самовоспламенения равная 1000 ^оС.

Тестирование проводилось при $C_1 = 0,1$. Это значение дает вид температурного профиля соответствующего полному протеканию процесса с температурой самовоспламенения около 1000 °C.

3.2. Моделирование шумов и их сглаживание

На полученную модель проводилось наложение случайных шумов.

Рис. 3.1. Общий вид «зашумленного» профиля

При этом максимальная амплитуда шумов составляла 2,5% от максимального размаха (A = 2000) то есть $\varepsilon = 50$ °C.

Проводилось сглаживание зашумленных кривых двумя методами

- сглаживание полиномом;

— сглаживание сплайном.

При сглаживании полиномом по семи точкам обнаружен ряд недостатков данного метода. Во-первых, для достаточно надежного сглаживания зашумленного профиля из 1000 точек необходимо повторение процедуры 200 раз. Во-вторых, сглаживанию не подвергаются три первые и три последние точки кривой.

При сглаживании сплайном проводился подбор параметра сглаживания (*R*) для различного числа экспериментальных точек.

Таблица 3.1

Зависимость параметра сглаживания от числа точек графика

Число точек N	Параметр сглаживания <i>R</i> 10 ⁴
1000	1,2
500	0,9
300	0,8
100	0,7

Данные таблицы 3.1 можно использовать при обработке экспериментальных данных для выбора исходного значения параметра сглаживания.

3.3.Зависимость кинетических параметров от вида температурного профиля

При вычислении кинетических параметров модельных температурных зависимостей были использованы дополнительные данные для системы МПФ-4—NiO.

Были вычислены кинетические параметры для трех различных видов температурного профиля (рис. 3.1, *а*—*в*).

Оказалось, что величина кинетических параметров темпеартурного профиля сильно зависит от выбранного участка обработки (табл. 3.2).

Таблица 3.2

Величина кинетических параметров различных участков модельного температурного профиля

C_1	K_0	E	N
1,0	1,610 1045	2798170	152,00
0,1	1,691 10 ⁴	79107,800	5,80
0,003	$2,101\ 10^4$	12563,000	0,14

Анализ полученных величин кинетических параметров для различных участков температурного профиля показал, что сопоставимость с литературными данными дает лишь полная температурная кривая. Поэтому при обработке экспериментальных данных выбирались участки наиболее полно описывающие процесс.

4. ЭКСПЕРИМЕНТАЛЬНЫЕ ДАННЫЕ И ИХ ОБСУЖДЕНИЕ

4.1.Определение температуры самовоспламенения

При определении температуры самовоспламенения использовалось несколько методов:

— дериватографический;

— термопарный;

— расчет энтальпийным методом [10];

— расчет по формуле Цынбала М. Н. [8].

Методом ДТА температура самовоспламенения определялась на дериватографе Югославского производства Q-1500D. Навеска смеси составляла 30÷40 мг. Скорость нагрева 5°С. Среда — воздух.

Дериватограммы нагрева исследованных составов приведены на рис. 5.1—5.4.

Рис. 4.1. Дериватограмма нагрева системы МПФ-2—NiO

Рис. 4.2. Дериватограмма нагрева системы МПФ-4—NiO

Рис. 4.3. Дериватограмма нагрева системы МПФ-2—Cr₂O₃

Рис. 4.4. Дериватограмма нагрева системы МПФ-4—Cr₂O₃

Определение температуры самовоспламенения термопарным методом проводилось на разработанной установке с использованием программы Prophil (см. п. 2).

Температурный профиль волны горения исследованных составов обрабатывался по следующей схеме:

— сглаживание сплайном (параметр сглаживания ρ =0,0001);

— выделение информативного участка;

— увеличение числа точек в n=10 раз;

— сглаживание сплайном (параметр сглаживания $\rho=0,0001$).

Параметр сглаживания выбирался экспериментально, исходя из сочетания следующих субъективных критериев:

— наименьшее искажение исходной кривой;

— наибольшее сглаживание.

Информационные участки температурного профиля исследованных составов приведен на рис. 5.5—5.8.

Рис. 4.5. Температурный профиль волны горения смеси NiO(60%)—МПФ-2(40%)

Рис. 4.6 Температурный профиль волны горения смеси

NiO(60%)—ΜΠΦ-4(40%)

Рис. 4.7. Температурный профиль волны горения смеси МПФ-2(32%)—Сr₂O₃(68%)

Рис. 4.8. Температурный профиль волны горения смеси МПФ-4(32%)—Сr₂O₃(68%)

При определении температуры самовоспламенения энтальпийным методом использовалась методика, изложенная в [10].

При расчете температуры самовоспламенения по формуле Цынбала М. Н. использовалось соотношение, описанное в его кандидатской диссертации [8].

Температура самовоспламенения по формуле Цынбала М.Н. сильно зависит от начальной температуры, используемой в формуле для расчета. Графические зависимости представлены на рис. 5.9 – 5.12.

Рис. 4.9. Зависимость температуры самовоспламенения системы NiO(60%) —МПФ-2(40%) от T_0 , °C

Рис. 4.10. Зависимость температуры самовоспламенения системы NiO(60%)—МПФ-4(40%) от T_0 , °C

Рис. 4.11. Зависимость температуры самовоспламенения системы

МПФ-2(32%)—Сr₂O₃(68%) от T₀, °С T, C T, C

Рис. 4.12. Зависимость температуры самовоспламенения системы МПФ-4(32%)— $Cr_2O_3(68\%)$ от T_0 , °C

Поэтому температуру самовоспламенения рассчитывали, используя данные по зависимости скорости горения ГКС от начальной температуры, при наибольшей разности температур $T_0 - T_{20}$.

4.2.Определение кинетических параметров волны горения ГКС

Представленная в работе установка и программное обеспечение позволяет обрабатывать температурно-временные зависимости и определять температуру самовоспламенения с погрешностью, которая зависит, как оговаривалось ранее от режима нагрева, который не постоянен и большее время скорость нагрева гораздо выше, чем при дериватографическом исследовании, что также подтверждается экспериментальными данными. Зная, кинетические параметры системы (*E*, K_0 , *Q*, *N*, $\eta(\tau)$) можно предварительно рассчитать температуру самовоспламенения проведя обратную операцию, но это очень трудоемко, а результат будет заведомо завышен.

Определение кинетических параметров волны горения ГКС производилось термопарным методом на разработанной экспериментальной установке с использованием программы Prophil (см. п. 2).

При расчете кинетических параметров использовались дополнительные данные, приведенные в табл. 5.2.

Значения коэффициентов теплопроводности порошковых материалов, приведенные в различных источниках, сильно различаются, а вычисленные теоретически превосходят их на порядок [9, 10]. Поэтому за теплопроводность смеси была принята средняя величина экспериментальной теплопроводности для металлизированных гетерогенных систем.

Продуктами горения исследуемых систем большей частью являются вещества в газообразном состоянии. Поэтому за величину теплопроводности продуктов была принята средняя теплопроводность газов. Тепловой эффект реакции рассчитывался по закону Гесса. Для расчета были взяты коэффициенты брутто уравнения реакции горения, рассчитанные на 1 кг смеси. Величины теплот образования веществ были взяты из базы данных программы ИВТАНТЕРМО [18].

За линейную скорость горения принимали усредненный результат нескольких независимых измерений.

Теплоемкость продуктов реакции горения определялась по аддитивной формуле. Теплоемкость компонентов системы была взята из базы данных программы ИВТАНТЕРМО [18].

Плотность смеси определялась исходя из массового соотношения компонентов и значениям плотностей этих компонентов при нормальных условиях.

Для определения кинетических параметров также необходимо знать распределение степени превращения по времени, которое определялось по уравнению (1.2). Распределения степени превращения по времени для исследуемых систем представлены на рис. 4.12 — 4.15.

Рис. 4.13. Распределение степени превращения по времени для системы NiO(60%)—МПФ-2(40%)

Рис. 4.14. Распределение степени превращения по времени для системы

Рис. 4.15. Распределение степени превращения по времени для системы

Рис. 4.16. Распределение степени превращения по времени для системы МПФ-4(32%)—Сr₂O₃(68%)

Таблица 4.1

Исходные данные для расчета кинетических параметров в волне горения

смеси NiO(60%)—Мg(40%).

Начальная температура, °С	20
Теплопроводность смеси, Вт/(м*К)	1,5
Теплопроводность продуктов, Вт/(м*К)	0,03
Тепловой эффект реакции, Дж/кг	2,9E6
Линейная скорость горения, м/с: NiO(60%)—МПФ-2(40%)	0,0036
Линейная скорость горения, м/с: NiO(60%)—МПФ-4(40%)	0,0047
Теплоемкость продуктов, Дж/(кг*К)	1020
Плотность смеси, кг/м ³	2476

Таблица 4.2

Исходные данные для расчета кинетических параметров в волне горения

смеси Cr₂O₃(60%)—Мg(40%).

Начальная температура, °С	20
Теплопроводность смеси, Вт/(м*К)	1,5
Теплопроводность продуктов, Вт/(м*К)	0,03
Тепловой эффект реакции, Дж/кг	2,9E6
Линейная скорость горения, м/с: Cr ₂ O ₃ (60%)—МПФ-2(40%)	0,0018
Линейная скорость горения, м/с: Cr ₂ O ₃ (60%)—МПФ-4(40%)	0,0016
Теплоемкость продуктов, Дж/(кг*К)	1090
Плотность смеси, кг/м ³	3180

Сложность однозначного определения кинетических параметров системы, с помощью термопарного метода, заключается в том, что в зависимости от выбранного временного интервала на температурном профиле получаются различные результаты. Результаты расчета кинетических параметров приведены в таблице 4.3.

Таблица 4.3

Смесь	T_c , °C	K_0	E	N
NiO(60%)—ΜΠΦ-2(40%)	513,8	7647	58068,4	3,9
NiO(60%)—ΜΠΦ-4(40%)	560,5	3686	61146,2	4,6
Сг ₂ О ₃ (68%)—МПФ-2(32%)	1190	2830	36231,9	2,2

Результаты расчета термопарным методом.

$Cr_2O_3(68\%)$ —M	ШФ-4(32%)	936,3	67440	205347	14
		5.0			

Примечание к таблице 5.3:

T_c — температура самовоспламенения;

*К*₀ — предэкспоненциальный множитель;

Е — энергия активации;

N — показатель степени, в функции кинетического закона.

Таким образом, подставив в (1.6) кинетические параметры получаем распределение функции тепловыделения по времени. Функции тепловыделения, исследуемых систем представлены на рис. 4.17 — 4.20.

В соответствии с таблицей 4.3 функции тепловыделения для исследованных систем имеют вид, представленный в таблице 4.4.

Таблица 4.4

Функции тепловыделения исследованных систем

Рис. 4.17 Функция тепловыделения системы NiO(60%)-МПФ-2(40%)

Рис. 4.18 Функция тепловыделения системы NiO(60%)—МПФ-4(40%)

Рис. 4.19 Функция тепловыделения системы МПФ-2(32%)—Сr₂O₃(68%)

Рис. 4.20 Функция тепловыделения системы МПФ-4(32%)—Сr₂O₃(68%)

4.3.Обсуждение экспериментальных данных

Результаты определения температуры самовоспламенения с использованием всех четырех методов приведены в таблице 5.4.

Сводная таблица экспериментальных данных температуры

	Температура самовоспламенения, °С					
Смесь	Дериватог- рафический	Термопарный метод	Энтальпийный метод	Формула Цынбала М. Н.		
	мстод					
МПФ-2 — 40% NiO — 60%	554	519	731	566		
МПФ-4 — 40% NiO — 60%	565	564	738	304		
МПФ-2 — 32% Cr2O3 — 68%	575	582/1190	226	512		
МПФ-4 — 32% Cr2O3 — 68%	553	257/936	222	505		

самовоспламенения

Таблица 4.6

Вещество	Температура, °С							
Бещество	25	250	287	650	1955	2127	2423	4500
Mg	S	S	S	S-L	L	L	L	L
NiO	S	S-*	S	S	S-L	L	L	L
Cr ₂ O ₃	S	S	S	S	S	S	S-L	L

Агрегатное состояние веществ, при различных температурах

Примечание к таблице 5.5:

S — твердое состояние;

L — жидкое состояние;

S-* — полиморфный переход;

S-L — плавление.

Как видно из таблицы 5.5 исходные компоненты к моменту самовоспламенения находятся в твердом состоянии. Разложения окислителей и окисления горючего при температуре самовоспламенения для индивидуальных веществ не происходит. Это позволяет предположить, что воспламенение исследуемых смесей происходит в местах контакта частиц компонентов в активных центрах. Возможно газообразные продукты реакции горения, проникая через поры, не только отдают энергию менее нагретым слоям, но и вступают в контакт с исходными компонентами тем самым, стимулируя процесс воспламенения системы.

Таким образом, температура воспламенения будет лимитироваться количеством активных центров (поверхностью контакта) и пористостью системы (коэффициентом уплотнения).

Заниженное значение температуры самовоспламенения, определенной с помощью термопарного метода, относительно метода ДТА скорее всего связано с реакцией термопары. Диаметр термопары должен быть соизмерим с дисперсной фазой компонентов, иначе погрешность сильно возрастает.

Как было отмечено ранее по формуле Цынбала М.Н., точность определения температуры самовоспламенения сильно зависит от начальной температуры. Для точности нужно замерить скорость горения систем с начальной температурой максимально приближенной к температуре самовоспламенения.

При всем при этом наблюдается высокая сходимость результатов, полученных различными методами.

По температурному профилю также можно судить о ширине той или иной зоны протекания процесса. При температуре самовоспламенения на-

блюдается максимум на кривой $\frac{dT}{dt}$, т.е. в этот момент времени достигается максимальная скорость нагрева, что связано с максимальным градиентом температур между фронтом горения и слоем еще не прореагировавшего вещества. Это согласуется с теорией теплопроводности, в которой говорится, что тепло передается от более нагретого тела к менее нагретому слою. Чем больше температурный градиент, тем выше тепловой поток в этом направлении.

Прогрев подготовительного слоя начинается в момент времени, когда $\frac{dT}{dt}$ начинает расти, и заканчивается когда $\frac{dT}{dt}$ будет максимальным. Затем следует зона протекания реакции, окончание реакции будет соответствовать моменту, когда $\frac{dT}{dt}$ после преодоления максимума достигнет нулевой отметки. По толщине зоны прогрева косвенно можно определить коэффициент температуропроводности начальной фазы [4, 5]. В связи с этим в работе были исследованы зоны прогрева для каждой из систем, а для смесей с Cr₂O₃ рассмотрены обе стадии.

Коэффициенты температуропроводности, вычисленные по ширине зон прогрева, соответствуют определенным ранее.

Ширина зоны прогрева и коэффициент температуропроводности

Смесь	№ стадии	<i>L</i> , мкм	a, cm ² /c 10 ³
NiO(60%)—ΜΠΦ-2(40%)	1	540	19,44
NiO(60%)—ΜΠΦ-4(40%)	1	799	37,55
Сг ₂ О ₃ (68%)—МПФ-2(32%)	1	900	16,20
	2	522	9,40
Сг ₂ О ₃ (68%)—МПФ-4(32%)	1	560	8,96
	2	720	11,52

исследованных систем

В системах с оксидом хрома наблюдается две стадии процесса горения. Поэтому были исследованы кинетические параметры каждой отдельно взятой стадии (рис. 4.21 — 4.24).

Рис. 4.21. Первая стадия процесса горения системы

 $M\Pi \Phi - 2(32\%) - Cr_2O_3(68\%)$

Рис. 4.22. Вторая стадия процесса горения системы

Рис. 4.23. Первая стадия процесса горения системы

Рис. 4.24. Вторая стадия процесса горения системы

МПФ-4(32%)—Сr₂O₃(68%)

Кинетические параметры для различных стадий температурного рофиля системы Mg — Cr₂O₃ приведены в таблице 4.8.

Таблица 4.8

Смесь	N⁰	T _c	K ₀	Е	Ν
Сг ₂ О ₃ (68%)—МПФ-2(32%)	1	582	4352	32322	1,7
	2	1190	1,183e+6	121461	3,5
Сг ₂ О ₃ (68%)—МПФ-4(32%)	1	257,2	1,82e+10	674137	49,0
	2	936,3	3,204e+4	137692	8,5

Кинетические параметры для смесей с Cr₂O₃ обоих стадий

ЛИТЕРАТУРА

Зельдович Я. Б., Франк-Каменецкий Д. А. Теория теплового распространения пламени// Журнал физической химии. — 1938, Т. 12, № 1. — С. 100 — 105.

Математическая теория горения и взрыва/Я. Б. Зельдович,
 Г. И. Баренблатт, В. Б. Либрович, Г. М. Махвиладзе. — М.: Наука, 1980. —
 478 с.

3. Франк-Каменецкий Д. А. Диффузия и теплопередача в химической кинетике. — М.: Наука, 1987. — 502 с.

4. Зенин А.А., Нерсиян Г.А Тепловая структура волны СВС, механизм и макрокинетика Высокотемпературного неизотермического взаимодействия элементов в системах Ti-Si и Zr-Si. Черноголовка, 1980.

5. Зенин А.А., Мержанов А.Г., Нерсиян Г.А Исследование структуры тепловой волны в СВС-процессах на примере синтеза боридов. Черноголовка, 1980.

6. Евстигнеев В.В., Вольпе Б.М., Боровиков В.В. Исследование механизма и закономерности формирования целевых продуктов в процессе протекания реакций самораспространяющегося высокотемпературного синтеза. Отчет о научно исследовательской работе. Барнаул, 1992.

7. Алдушин А.П., Мержанов А.Г. Хайкин Б.И. О некоторых особеностях горения конденсированных систем с тугоплавкими продуктами реакции// Доклады академии наук СССР, Т. 204, №5 1972.

8. Цынбал М. Н. Дис....канд. техн. наук/ЛТИ им. Ленсовета. — Л., 1975. — 149 с.

9. Горение металлизированных гетерогенных конденсированных систем/Н. А. Силин, Л. Я. Кашпоров, В. Д. Гладун и др. — М.: Машиностроение, 1982. — 232 с. Теплофизические свойства компонентов горючих систем/Ю. Е. Шелудяк, Л. Я. Кашпоров, Л. А. Малинин, В. Н. Цалков. — М.: НПО «Информ ТЭИ», 1992. — 184 с.

11. ГОСТ 3044—61. Термопары. Градуировочные таблицы при температуре свободных концов 0 °С. — М.: Издательство стандартов, 1970. — 32 с.

12. Сосновский А. Г., Столярова Н. И. Измерение температур. — М.: Издательство стандартов, 1970. — 253 с.

13. Васильев В., Гуров И. Компьютерная обработка сигналов в приложении к интерферометрическим системам Москва, 1998.

14. Джонсон К. Численные методы в химии. — М.: Мир, 1983. — 504 с.

15. Носач В. В. Решение задач аппроксимации с помощью персональных компьютеров. — М.: МИКАП, 1994. — 328 с.

16. Булычев А. Л., Галкин В. И. Прохоренко В. А. Аналоговые интегральные схемы: Справочник. — Минск: Беларусь, 1994. — 328 с.

17. PC-LPM-16/PnP User Manual. — National Instruments Corporation, 1996.

18. Gurvich, L.V., Iorish, V.S. et al. IVTANTHERMO — A Thermodynamic Database and Software System for the Personal Computer: User's Guide. — CRC Press, Inc., Boca Raton, 1993.